Package: offartmb (via r-universe)

September 15, 2024

Title Use offarray code with RTMB
Version 1.0.25

Description Helper functions to allow offarray code to work directly
under RTMB

Author Mark Bravington <markb2@summerinsouth.net>
Maintainer Mark Bravington <markb2@summerinsouth.net>
Imports utils, mvbutils, offarray (>= 2.0), RTMB

License MIT

Repository https://markbravington.r-universe.dev
RemoteUrl https://github.com/markbravington/offartmb
RemoteRef HEAD

RemoteSha 0561e17f8cSbfeacae241dc6£89d58e5e9881b82

Contents
Obinary e 1
Index 4
Obinary Overloading glue between offarray and other packages such as RTMB
Description

Package offartmb lets you use of farray code directly in package RTMB. All you have to do is:

* make sure you have done library(offartmb) after library(offarray)

* make sure the body of your objective function, and any hand-written sub-functions that is
calls, is wrapped in a call to reclasso which is in package offarray. As its documentation
says, there’s no downside to doing that.

2 Obinary

* make sure you use REPORTO(thing_I_want_to_keep) to preserve interesting variables com-
puted inside your function (like REPORT() in TMB or indeed package RTMB).

Then your function myfun will still run fine outside RTMB, but you should also be able to run
myfun_rtmb <- RTMB: :MakeADFun(myfun, <paramvals>) and everything will be copacetic there-
after.

Usage

define_repops(...)
You would never just Obinary on its own like this...
Obinary(op, el, e2, ..., allow_unary = FALSE)

Arguments

in define_repops, a named list of replacement operator/functions and expres-
sions to replace them with. The expressions normally need to be wrapped in
quote— you don’t want define_repops itself to evaluate them. See of fartmb: : : . onLoad
for example. If empty, the current repops will be returned. In Obinary, ... can
contain additional arguments for op, which will be passed to it unchanged. This
is not meaningful for pure operators such as "*", but conceivably useful for
eg statistical distributions where the mean, or mean-and-variance, might be S4;
often the user might want to pass an extra argument such as "log=FALSE" or

"df=5".

op Name of an "operator”. Usually eg "+" or similar but potentially any function
which should dispatch based on its first two arguments.

el, e2 Arguments whose class to dispatch on

allow_unary A few functions, such as "-", have a legitimate unary variant; -x makes sense on

its own, whereas *x doesn’t.

Details

You probably do not want to be reading this.

But, well, here you still are, so here it is. As you know, S3 classes (such as of farray) don’t always
play nicely with S4 classes (such as advector in package RTMB); the latter can be big bullies in
terms of insisting that Their class comes First, leading to downstream woe. So if you want S3 code
to run both on "normal" R objects and on objects that might be S4, there is work to do— either
by you, or ideally behind-the-scenes automatically, which is where package offartmb can help.
Particular problems occur with "double dispatch” on operators such as addition, where R’s built-
in S3 dispatch rules are well-known to be borked. One option is to S4-ify the S3 class, and deal
specifically with multiple inheritance, but that’s a lot of work. Another option is to use something
like of farray: :reclasso (qv) to modify the code that is being run, to replace the base-R calls to
eg "+" with calls to functions that know how to dispatch properly.

reclasso is an S3 generic dispatching on its by argument, and the default version actually makes
no modifications. But there is a method offartmb:::reclasso_advector which (should) work
on advector-class objects from package RTMB, ie when RTMB: :MakeADFun (qv) is running your
code. reclasso_advector makes some additional tweaks as well, eg to REPORTO for stashing
results. If you wanted offarray to work with some other non-"RTMB’ S4 package, you would

Obinary 3

need to write a similar generic. The additional tweaks are likely package-specific, but for operator-
replacement the versions in of fartmb itself might be usable as-is; read on.

It is pretty unlikely that you will ever need to tinker with any of this yourself, but I need to document
at least one function in order for this package to install smoothly! Anyway, even with RTMB, you
might conceivably need to add your own replacement operator/function for some weird thing that
doesn’t work out-of-the-box with of farray (although a lot of functions in RTMB actually seem to
work OK). You can do so in two steps with define_repops, eg via

.besselZfun <- function(el, e2, ...) Obinary('besselZ', el, e2, ...)
define_repops(besselZ=quote(.besselZfun))

The basic trick for most operators is to remove the of farray class from the operand(s), then call
the base-R operator which will normally lead to some S4 method being invoked, then add back the
offarray class and its dimensions etc to the result. Since many operators/functions follow a similar
pattern, the function Obinary can be used to easily generate replacement operators. For example,
the replacement for "*") is in effect

offartmb:::.0times <- function(el, e2) Obinary("x", el, e2, FALSE)

Obinary is not actually specific to RTMB stuff, and might be useful in the event anyone ever needs
to add similar functionality between of farray and some S4 package that is not RTMB.
Value

Obinary returns a new function. define.repops normally returns (invisibly) the original set of
replacement operator/functions.

See Also

offarray: :reclasso, mvbutils: :REPORTO, RTMB: :MakeADFun

Examples

should have one, I guess...

Index

* misc
Obinary, 1

define_repops (Obinary), 1

Obinary, 1
offartmb (Obinary), 1

reclasso, /

	Obinary
	Index

