Package: microscoping (via r-universe)

September 10, 2024
Title Preliminary feasibility for CKMR
Author Mark V. Bravington <markb2@summerinsouth.net>

Description Rough-as-guts laugh-test design calculations for CKMR on
fish

Maintainer Mark V. Bravington <markb2@summerinsouth.net>

Imports stats, utils, mgcv, mvbutils (>= 2.9), atease, offarray (>=
2.0)

License GPL-2

NeedsCompilation no

Version 1.0.71

Repository https://markbravington.r-universe.dev
RemoteUrl https://github.com/markbravington/microscoping
RemoteRef HEAD

RemoteSha fcaac9ca748d7354169fe3de75d871aa056a8331

Contents

microscoping-package
ckmr_laugh_test. L
Clt2 e

Index

microscoping-package Rough feasiibility calculations for CKMR on typical fish

2 ckmr_laugh_test

Description

If you don’t know what CKMR is, stop reading now.

The main function ckmr_laugh_test (qv) predicts how many kin-pairs of various types might be
expected for Your species of fish, given Your proposed CKMR sampling scheme and Your guess
as to what the current stock size etc might be. The clue is in the name ckmr_laugh_test (qv). It
is deliberately crude because you are not supposed to really trust the results, and certainly not to
try fine-tuning them by microtweaking the sampling scheme, because the model assumptions are
bound to be somewhat wrong.

I wrote ckmr_laugh_test for private use by me & a few chosen colleagues, but it seems to have
escaped into the wider world, and predictably to have been used more seriously than I ever in-
tended. Be aware that AFAIK ckmr_laugh_test has never been simulation-tested and might have
substantial errors (I hope not). I don’t feel it’s my job to test it thoroughly, since I never meant it
for general use! Please feel free to do that simulation-testing yourself, e.g. using Shane Baylis’
fishSim package or Eric Anderson’s ckmrSim package (and let me know the result); it would be
quite helpful..

There is a sex-specific version c1t2, which I reluctantly added for species with unignorably strong
sexual dimorphism (e.g. swordfish) where ckmr_laugh_test is really inadequate and cannot be
tricked into giving even a semi-reliable answer. c1t2 is harder to use, and even less tested.

ckmr_laugh_test Rough-as-guts close-kin scoping

Description

How many kin-pairs might be expected in an age-structured population under a given sampling
"design"? You have to specify a few things about the species and about the sampling design. So
the idea is that you play around with the "sampling design" to see how samples of which type
(age, year) you might have to do to get a useful number of kin-pairs. If that looks promising,
you should go off and do a more formal statistical design. ckmr_laugh_test is the non-sexually-
dimorphic version, and is substantially easier to set up; if you really need a two-sex version because
of major differences in e.g. catchability or fecundity or abundance, then look at c1t2. Most of this
documentation applies to both. Note also the health warnings in package?microscoping.

To run ckmr_laugh_test, you will need to start from an existing age-structured stock assesssment.
If you don’t have such a thing, you’ll need a different approach— "watch this space". Also, the
assumptions behind ckmr_laugh_test are deliberately crude (see below for details). They might
be too crude for your problem; in that case, you’d need to go straight to a more formal design
anyway, based on a bespoke CKMR model.

Even if your ckmr_laugh_test results suggest that you can get plenty of kin-pairs, it does NOT
follow that you will actually be able to estimate everything you really really want, because the
spread of samples and the ability to accurately measure covariates (eg age) can have a big impact.
However, if after playing around with ckmr_laugh_test you decide that you can’t get enough kin
pairs, then you are simply dead in the water. And again: if you can, then it’s time to do that more
detailed and formal design.

The following types of kin-pairs are reported: parent-offspring POPs, separated according to whether
the offspring are "adult" or not at time of sampling; half-sibling HSPs (juve-juve only) except from

ckmr_laugh_test 3

the same cohort; and grandparent-grandchild GGPs (juve-juve). The most useful are generally
POP_offJ (i.e. where offspring is still juvenile) and HSP_JJ. When interpreting the numbers, bear
in mind an implicit assumption that age is known fairly accurately for juveniles, at least. Offspring-
age is really important for POPs (and HSPs); parent-age less so.

There are two reasons for restricting HSPs to JJ. The first is that HSPs and GGPs cannot be dis-
tinguished genetically, which unfortunately tends to make HSPs between "adults" not useful; that’s
why HSP_AA etc is not reported, because they might actually be GGPs which just kinda mess up
the signal for population dynamics. (There is some information, but I'm not sure how useful it is.)
Hence the restriction to juve-juve HSPs, which are certainly useful. You are required to specify the
MAX_JUVE_AGE up to which animals still count as "juvenile". Sometimes, raising MAX_JUVE_AGE, so
as to include some age-classes with very low individual fecundity, can increase the number of HSPs
a lot. ckmr_laugh_test reports the number of GGPs, so you just need to make sure that the ratio
of GGPs to HSPs stays small enough to ignore (eg 1%). The second reason for restricting HSPs to
JJ, is that HSPs are not useful when the offspring-age is very imprecise. If that is already happening
before sexual maturity, you should push down MAX_JUVE_AGE to a lower value.

There are two reasons why POP_of fA may not be useful (ie why you may just want to concentrate
on POP_of fJ). The first is if age estimates are imprecise for "adults"; if the birth-date of an offspring
is vague, then that POP is just not very informative for CKMR purposes. The second reason is that,
even if adult age is accurate, you may not want to push your pop dyn model back far enough in time
to cover all potential adult offspring. At some point it becomes more trouble than it’s worth to push
the model back into the past in order to accommodate diminishing returns of information from a
handful of distant-past POPs.

The parameter MAX_JUVE_AGE is thus doing "double duty" here. First, it lets you restrict compar-
isons so that GGPs are rare compared to HSPs; that’s all about the maturity schedule of the species.
Second, it lets you separate between young animals with fairly precise age estimates (based on
body length, and/or otoliths, and/or vertebral sections), and older ones where age may be vague;
that’s all about ageing-error, and may or may not relate to sexual maturity. So the two meanings
of MAX_JUVE_AGE may be different. If that seems really important to you, then I suppose you can
always run ckmr_laugh_test twice with different MAX_JUVE_AGE, and mix-and-match the results,

The assumptions are deliberately crude and inflexible, because the idea is that you should do a
proper design if-and-only-if this crude calculation looks promising. For the same reason, there’s
no attempt to automatically "optimize" the sample sizes in this code to get the overall numbers big,
although that is entirely do-able in a full design; with ckmr_laugh_test, you just have to poke
around manually and try different things (eg age-breakdown especially, and duration of survey),
which hopefully also gives you some insight into trade-offs between different types of sample. If
the assumptions are just too crude for you, then it might be possible to modify this code simply
enough going to full design; try it yourself, or by all means ask me, though I may well not have
time to help. Anyway, the assumptions are:

* steady-state population;
* males and females have identical reproductive and demographic parameters;
* age, and nothing but age, affects fecundity and selectivity.
Plus group: ckmr_laugh_test and c1t2 are not really intended for stocks with a large pro-

portion of fecundity sitting in the plus-group. There’s no perfect way to make the plus-group
consistent with both (i) steady-state pop dyn, and (ii) "constant" mortality rate (ie equal to the

ckmr_laugh_test

pre-plus-group-age mortality rate, inferred from the log-linear regression). You gotta pick one.
So if extraplus=FALSE (the default), I calculate a separate mortality rate for the plus-group that
keeps the input plus-group numbers in balance with the other age classes. However, this may not
reflect true mortality (e.g. if the plus-group is big because it contains a residue of more-lightly-
exploited days) and that will distort HSP probabilities. If instead extraplus=TRUE, the actual
numbers supplied for the plus-group are replaced by an extrapolation based on the pre-plus-group
age classes, with mortality equal pre- and post-plus-group. That might be more realistic mortali-
tywise, but could misfire in terms of the actual TRO that a CKMR study would encounter. I added
the extraplus option so that it’s not My fault when Your numbers go wrong... but with some
trepidation. For this laugh-test stuff, I really want to avoid adding options, because it will only
make people believe in results that they shouldn’t (the more effort You put in, the more You are
inclined believe the results, but for no good reason!).

Code notes: The code starts with some "housekeeping” to expand out the plus-group, smooth
the age distribution, make sure enough years are "simulated", etc; I recommend ignoring it un-
til/unless you can’t. The CKMR action starts around the line nfata <- The main part of
CKMR is the probability calculations for different kinships depending on the potential covariates
of each pair in a comparison.; something like this is always needed for real data, as well as for
scoping. Then, specifically for design/scoping, there is a calculation of the likely number of pair-
wise comparisons of each type, from the line starting ncomps <- ... onwards. With real data,
you’d know the actual number of comparisons.

The code uses the offarray package to allow arrays where the first index is not 1; in this case, ages
start at 0. Generally, the code is about as straightforward as it could be, but does make use of one
novel feature: offarray::autoloop (qv). This "loops" over whatever named parameter ranges
you tell it, evaluating an expression that you pass it for each combination of the parameters, and
putting the results into one or more arrays. autoloop is like writing for-loops without the "for",
but is far quicker than R’s built-in for-loops, and saves you having to work out how to vectorize
things according to R’s own rules, which requires hideous mental contortions even when possible,
which isn’t always. of farray: : sumover is also used, and it does exactly as its name suggests.

Probability calculations: The code shows the basics of all POP, HSP, and GGP calculations. It
only deals with females- the final answers are obtained by scaling up- and lacks an explicit time
dimension because of the steady-state assumption, but the changes required for application to real
data are not enormous. Mainly, the TROF would need to be a vector across years, rather than
a scalar (which corresponds to steady-state). For really real data, though, length as well as age
ought to be considered, certainly for HSPs.

Steady state: Steady-state obviously needs to have applied over a generation or two. Hence we
need to eliminate cohort effects, so the input numbers-at-age (eg from a recent stock assessment)
are first smoothed by fitting a mildly-nonlinear "catch curve"; from that, we can also estimate
age-specific steady-state survival. The "catch curve esque" model for smoothing numbers at age
is this:

glm(nata ~ age + sqrt(age), family=Tweedie(p=1.7, link="log"),

and the final input numbers-at-age is disregarded, in case it’s really a plus-group. If that model
leads to any estimated annual survivals above 1, then a purely (log-) linear fit is used instead. The
point of the Tweedie is to be somewhere between "noise purely due to cohort variability"” (which
tends to have var propto mean-squared, ie Tweedie(2)) and "noise purely due to counting-type
error” (which has var propto mean, ie Tweedie(1)). Not a big deal, just a minor improvement.

ckmr_laugh_test 5

Sex differences: It’s perfectly possible to amend the algorithm so that the two sexes can have
different reproductive and/or sampling schedules by age. But in the interests of simplicity and
of not making the results seem more reliable than they really are, I haven’t done so here. When
a species really does have strong sex differences, I suggest running the code twice, once using
the schedules for females and once using the schedules for males, and averaging the results. It’s
crude, it’s wrong— but the whole point of ckmr_laugh_test is to be simple, crude, and unlikely
to be mistaken for "correct". If the "twice and average" just seems too crude— eg if the sex ratio
of adult samples is likely to be strongly sex-biased— then you really need to do a proper CKMR
design.

FWIW: I did consider including an example to show how sex can be handled a bit better than
"twice and average", by running ckmr_laugh_test several times with adjusted sex-specific sam-
ple sizes and sex-specific age schedules, and then combining the results. But in the end, I decided
not to, because (i) the process was getting complicated to explain, and (ii) there is in any case
no really satisfactory solution without making all the ckmr_laugh_test code sex-specific (which
actually wouldn’t be that difficult). The issue is that the sex of potential parents does matter
in CKMR (including unobserved parents in HSPs, and the unobserved "middle generation" of
GGPs), but the sex of offspring usually doesn’t. That means that a proper sex-specific version
should split the sample sizes of potential parents by sex, but not the sample sizes of offspring.
However, the code as currently written allows "juveniles" (i.e. age up to MAX_JUVE_AGE) to be
parents as well as offspring— since MAX_JUVE_AGE might just be a filter to discriminate "ageable"
age-classes from "unageable" ones, rather than an indication of maturity per se. So there’s no
obviously clean way to split the sample sizes. Of course all this could be handled properly in
fully-sex-structured code, but not really within the current framework.

Usage

ckmr_laugh_test(nata, wata, pmatata, samp_pata, samp_ny,
MAX_JUVE_AGE, MIN_CATCH_CURVE_AGE=0, beqy_POP=FALSE,
etriv=0.01, extraplus=FALSE, want_gory_details=FALSE)

Arguments

nata numbers-at-age in population (both sexes combined). Starts at age 0. Final
age-class is assumed to be a plus-group and is not used (because if things are
steady-state, you can work out what’s in the plus-group just from the non-plus
numbers).

wata, pmatata weight-at-age and proportion-mature-at-age (starts age 0). Fec-at-age is as-
sumed to be wata*pmatata.

samp_pata proportion of sample by age class (starts age 0).

samp_ny total numbers of samples per year. In each year, this is pro-rated by samp_pata
to determine numbers-sampled-by-age-and-year.

MAX_JUVE_AGE what’s the greatest age that will still be treated as "juvenile" ie included in
HSP/GGP comparisons, and as "potential offspring" in adult/juve POP com-
parisons. (Adult-adult POP comparisons still happen, but are summarized sepa-
rately.)

MIN_CATCH_CURVE_AGE
what age to start fitting a log-linear "catch curve" regression? Use this to skip
earliest ages if their mortality is verrry high. Be warned you could get into

6 ckmr_laugh_test

trouble with overstretching steady-state assumptions here. Rough-as-guts, like |
said...

beqy_POP should it allow comparisons between "adults" caught in year Y and "juves" born
in the same year (ie B==Y) ? Normally this is a bad idea because adults caught
during a spawning season have not had a fair go; however, if you are sure that
"adult" fishing happens after spawning (within the cycle of whatever "year" you
are using) then you could set it to TRUE. The real reason for having it at all, is
to check that ckmr_laugh_test is matching the "POP cartoon", which requires
adult sampling shortly after juve birth; see Examples.

etriv Probably leave this alone. It controls how far out to expand the plus group, ie
the AMAX at which all animals are forced to die. Setting etriv=0.01 means
that only 1% of the total fecundity will be "lost" due to animals being forced to
die. Mainly there to avoid calculations taking forever with 10000 age classes...
if things take too long, try increasing etriv.

extraplus It should not matter much what you choose here— if it does, this simple laugh-
test code might not be right for you (see argument etriv too). Anyway:if TRUE,
the input plus-group (represented by the final age-class in the input) will be
ignored, and will be replaced by extrapolation from the pre-plus-group based on
estimated survival from Aplus-2 to Aplus-1. If FALSE, the input plus-group
will be assigned an annual survival (from Aplus-1 onwards) so that it smoothly
matches the fitted NCAplus-1]. Neither option is correct; nothing ever could be
for an equilibrium plus-group out to age Infinity.

want_gory_details
if TRUE then the usual result will acquire an attribute gory which is the en-
vironment where everything was evaluated— all the intermediate calculands
are kept in there. It might be big. ls(attr(<result>,"gory”))— or 1s(
<result>@gory) if package atease is loaded— will show what’s available, e.g.
covariate-specific probabilities and number-of-comps. I've used it for debug-
ging, and for simulation-checking the code.

Value

A numeric vector with fairly self-explanatory elements "POP_off]", "POP_offA, "HSP_JJ", "GGP_JJ",
plus "nsamp_J" and "nsamp_A" which are totals across all years. For POPs, "offA"/"off]" describes
whether-or-not offspring is above MAX_JUVE_AGE. Same-cohort HSPs and GGPs are excluded.
See DESCRIPTION. There are also attributes call (obvious) and params. The latter is a list with
the actual values of all parameters; by default, it does not print (it has class nullprint) since it is
mostly clutter because you know what they were since you called it, but you can get the values if you
need them viaeg attr(result, "params"”)$nata, or show them all viaunclass(attr(result,
"params”)). If you have library atease loaded, then you can just type result@params$nata etc.

Examples

N <- c(1000, 780, 690,

420, 400, 282,
210, 150, 100,
900)

W<-c(o.1, 1, 2,

clt2 7

, 3.5, 4,
5, 5.2,

’

g A~ w
N

.5
.5
Pmat <- c(@0, 0.1, 0.4,
0.8, 1, 1,
1, 1, 1, 1)
Sampa <- c(0.05, 0.2, 0.7,
1, 1, 1,

0.8, 0.6, 0.4,
0.2)
Sampy <- c(100, 500, 100)
MJA <- 3
testio <- ckmr_laugh_test(nata=N, wata=W, pmatata=Pmat, MAX_JUVE_AGE=MJA, samp_p=Sampa, samp_ny=Sampy)
#
Cartoon:

N <- c(4e6, 400, 0)

ie very high mortality, so in effect only one year of adulthood.
Needs one extra "plus-group” age-class to keep machinery happy,
but the number in that final class is not used directly.
#
W

<-c(C1,1, 1D

Pmat <- c(@, 1, 1)

Sampa <- c(1, 1, 0)

Sampy <- c(10 * sqrt(400)) # one year, equally split between juves and adults

Should give 50 POPs...

MJA <- @ # @-group are juves; 1+ are adult

cartoonio <- ckmr_laugh_test(nata=N, wata=W, pmatata=Pmat, MAX_JUVE_AGE=MJA,
samp_pata=Sampa, samp_ny=Sampy,
beqy_POP=TRUE) # phew, POP_offJ == 50 !

clt2 Sex-aware close-kin scoping

Description

Like ckmr_laugh_test (qv) but everything is split by sex, for better handling of strongly dimorphic
species. This two-sex version c1t2 entails considerably more tedium when setting up the input data,
and runs about eight times slower, so stick to the single-sex version ckmr_laugh_test if you can
bear to. It’s all very rough anyway. And I haven’t really tested it. Feel free to do so by simulation
(not sarcastic!).

Usage

clt2(n_sa, w_sa, pmat_sa, nsamp_sya= NULL, samp_p_sa,
nsamp_y, MAX_JUVE_AGE, MIN_CATCH_CURVE_AGE= @, beqy_POP= FALSE,
etriv= 0.01, extraplus= FALSE, want_gory_details= FALSE,
.BLOCKSIZE= 1e4, .REPORTSEC= 5)

8 cle2

Arguments

n_sa, w_sa, pmat_sa, samp_p_sa
all as per ckmr_laugh_test, except now sex-specific; so they should each be
a two-row matrix or offarray, one row for each sex. Rownames, if present,
must be "F" and "M" in either order, but must be consistent. With offarray
arguments, I think that AGES must start at 0, but I’'m not sure this is checked...

nsamp_sya Sample sizes by sex, year, age (3D offarray, or possibly normal array). A
value of NULL, the default, means it will be constructed from samp_p_sa[S,Alxnsamp_y[Y]
in the obvious notation.

nsamp_y, MAX_JUVE_AGE, MIN_CATCH_CURVE_AGE, beqy_POP, etriv, extraplus,

want_gory_details
as per ckmr_laugh_test

.BLOCKSIZE, .REPORTSEC

passed to autoloop. If the main loop is slow, you can set these to get a progress
update every . REPORTSEC seconds. I wouldn’t recommend messing with . BLOCKSIZE
but it exists for a reason— and so does the autoloop documentation ;).

Value

Mostly as per ckmr_laugh_test. Results are not disaggregated by sex (though the computations
internally are sex-specific) because the focus is on total kin-pairs. Attributes call, params, and
nsamp_sya are attached. The last two won’t display in full if mvbutils has been explicitly loaded,
because they are class nullprint. That is entirely deliberate. If you want to see them, use unclass
but that will zap their offarray-ness too; safer is eg

res<-clt2(...)
nsampo <- res@nsamp_sya # requires library(atease); already imported
oldClass(nsampo) <- oldClass(nsampo)[-1]

can now print nsampo

Examples

This really SHOULD have an example
but it doesn't yet

Index

* misc
ckmr_laugh_test, 2
clt2,7
microscoping-package, 1

autoloop, 8

ckmr_laugh_test, 2,2,7, 8
clt2,2, 3,7

microscoping (microscoping-package), 1
microscoping-package, 1

offarray, 8

	microscoping-package
	ckmr_laugh_test
	clt2
	Index

