Package: despack (via r-universe)

September 10, 2024

Title Helpers for CKMR design

Version 1.0.11

Author Mark Bravington

Description Help to compute expected Hessian given a design (ie sample

sizes) and your CKMR model

Imports utils, mvbutils, offarray

Suggests TMBO

Maintainer Mark Bravington <markb2@summerinsouth.net>

License GPL-3

Repository https://markbravington.r-universe.dev

RemoteUrl https://github.com/markbravington/despack

RemoteRef HEAD
RemoteSha 22dd6ab1a24b7700506183d108a0da90040f3745

Contents

Index

despack-package
CKllogalike_funs e
finfo_onetype e
get_Hbits

despack-package How to use the despack package

2 despack-package

Description

This package provides helper functions for CKMR design. To use it fully, you need:

» working code for a CKMR model, either in R or TMB(O), that can calculate all the kinship
probabilities;

* guessestimates of true parameter values;

* explicit "designs" ie proposals for sample sizes, disaggregated to whatever level would be used
in the "real data" (eg by year and age and sex)

* aclear definition of some quantity whose precision you're interested in (eg a total abundance
in some specified year; a total biomass; the natural mortality rate; replacement yield in some
year; ...). This should be a scalar function that takes all the pop dyn parameters as its argument.

Note that you do not need any datasets, whether real or simulated!

There are currently 4 functions in the package, but don’t start by looking at their helpfiles! Look
at the WORKFLOW below, then have a go at the script/vignette which is not currently part of
the package. The main "documentation" is really a script, with accompanying functions and data,
that doesn’t currently live inside this package (I'm not sure what the best arrangement is: maybe a
"demo package" that goes alongside this one, or maybe "just" as a vignette, but it’s complicated). Of
necessity, CK examples tend to be quite application-specific, whereas the functions in this package
are deliberately generic.

Workflow

To calculate the likely SE of your quantity-of-interest, do this (assuming your model is in TMB(O)
rather than R; see later for all-R comments):

* TMB(O) : :MakeADFun to set up data ranges and constants in the model (but no data required).

* CK_logalike_funs to make convenient wrappers for calling your TMB(O) function, and for
returning REPORTed quantities, such as CK probability arrays and population dynamics num-
bers;

» get_Hbits to compute all the expected Fisher Information matrices ("negative Hessians")
from doing one single comparison between two samples with specified covariates. Results are
stored in compressed form.

» finfo_onetype for each type of CK comparison in turn (eg POPs, XMHSPs, POPs where one
sample only has approximate age, ...). Here you will need to supply a crucial new argument,
derived from the design itself: an array holding the relevant number of comparisons disaggre-
gated by covariates (eg an offarray called n_comp_MOP_BYA). Result is the expected Fisher
Info for all comparisons of that type.

* Add up all the finfo_onetype results (there might only be one type, if your application is
very simple) to get the overall Fisher Info.

* Invert that to get the parameter covariance matrix

* Double-dot that with the numerical derivative of your quantity-of-interest function (ie apply
"the delta method"), to get the expected approximate variance of your thing.

despack-package 3

A simple example is given in the vignette (which I haven’t yet included in the package... there’s a
separate script).

There is also a schematic example (ie it shows plausible R code, but doesn’t actually work) in
the help for get_Hbits. Also, there is individual documentation for each of CK_logalike_funs,
get_Hbits, and finfo_onetype, plus for the helper function mvbutils: :numvbderiv and espe-
cially its parallel version mvbutils: :numvbderiv_parallel, but for goodness sake don’t start by
reading their helpfiles. Follow the vignette/script instead, until and unless you get stuck.

R only design: If your CK model is entirely in R— presumably using of farray otherwise you
will go mad with index confusion— then you obviously don’t need the MakeADFun step, and the
second step can be "hand-written" easily; again, the vignette/script is the place to look, for the
function reportees_Ronly. Following steps are identical. Because there’s no need to fit the
model to actual data, an all-R version is quite feasible even for pretty complex designs— though
if you ever turn the design into reality, you might need to write a TMB(O) version anyway to be
able to actually fit it— though package RTMB may now obviate C-TMB code altogether. But
you’ll have several years before you need to do that ;)

Efficiently investigating different designs

Once you have gotten all the steps working "manually" for your application, you will want to
consider various possible designs and see how they influence Standard Errors / CVs. Since there
are a huge number of individual sample sizes that potentially could be controlled, you can’t really
do that manually. For serious use, you will instead want to write your own "driver" function that
groups together several of these steps; varcalcs_delfi_A (which accompanies the script) is an
example. The key part is a "design generator”, which:

* takes a small number of control parameters (total sample sizes by category, trends in sample
size by year, how to apply selectivity, ...; it all depends on your application);

* generates disaggregated sample sizes, ie a complete design specification;
Once you have generated the detailed design, the rest of your driver function needs to:

* runs the design thru finfo_onetype (also using results of one previous call to get_Hbits),
once for each type of CK comparison (eg MOPs, XSHPs);

» sums those Hessians, and inverts the result to get the parameter covariance matrix;

* applies the "delta method" to that covariance matrix, using numerical derivatives of your
quantity-of-interest WRTO the parameters, to calculate the variance of your Thing.

You can also incorporate Hessian components from (some types of) non-CKMR data, such as
age-at-length compositional samples, and priors on random effects and parameters— probably not
CPUE though :) I've done that myself in several earlier examples. It’s really up to you...

Not for now

"Optimal" design subject to arbitrary constraints, using a "driver" function as per last section. (It
actually works, but will take me some time, ie at least months, to port over into this package.)

4 CK_logalike_funs

CK_logalike_funs Make wrappers for TMB(O) functions

Description

Takes a TMB(O) object as returned by MakeADFun, and Returns a list containing three functions:
1glk, D1glk, and reportees. 1lglk can be used exactly as in the all-R example, and returns a
positive log-likelihood! D1lglk returns the gradient. reportees returns all the things from TMB
REPORT() statements (as a list).

These wrappers are just convenient things that facilitate subsequent use in despack functions. You
could easily enough write functions yourself to call TMBOBJ$fn and TMBOBJ$report and so on, and
reorganize the output. But you don’t have to, because I have...

Before running this, you have to manually call something like boring_data_prep_<blah>() to set
up an environment containing all the data (which will be env here), and then MakeAdFun to create
the "TMB object" (which will be TMBOBJ here).

Calling 1glk(<pars>,report.=TRUE) will create variables in environment(lglk)’ that can be

accessed afterwards, just like what happens in the R version.

"

Calling reportees will by default just return variables whose name starts with "Pr_". You can
make it also return other things, such as pop dyn quantities or expected kin-pairs, via the parameter
want="all".

Usage

CK_logalike_funs(env, TMBOBJ, suffix='")

Arguments
env environment containing all necessary data
TMBOBJ TMB object (an R list) returned by MakeADFun.
suffix string to append to the names of each function— so suffix="_D" would lead to
a list with functions called 1glk_D, D1glk_D, and reportees_D.
Value

A list of three functions.

See Also

get_Hbits

finfo_onetype 5

finfo_onetype Expected Fisher Info from all CK comparisons of given type

Description

This function computes the expected Fisher Information (ie negative of the Hessian) from a set of
CK pairwise comparisons all of the same "type", but with many combinations of individual covari-
ates. The "of the same type" means, for example, that this could be applied to cross-cohort half-sib
comparisons between place A and place B where both samples have exact age measurements. A
different "type" would be needed for, say, parent-offspring comparisons, or for half-sib comparisons
where one animal has an inexact age, or...

The two ingredients are:

* derivs of sqrts of the CK probs for all covariate combinations, with respect to parameters;

* expected number of comparisons, for all the same covariate combinations.

The former comes from calling get_Hbits (qv). The number of comparisons is something you
(partly) have to set up yourself, though there might be functions around to help.

Number of comparisons: If the indices of ncomp are (j1,k1,...1,32,k2,...2) where 1
pertains to the first sample and 2 to the second, then in general

ncomp(j1,k1,...,j2,k2,...2) =
nsamp(j1,k1,...1) * nsamp(j2,k2,...2) * const(j1,......)

where const () is usually 1 (include all such comparisons) or 0 (omit these even if they could be
done). Sometimes it is 0.5, to avoid double-counting when j1==j2 & k1==k2 & . . ., etc.

Note: finfo_onetype only deals with one type of CK comparison at a time (see its doco)
whereas get_Hbits deals with all of them. Thus, if you have more than one type of CK com-
parison (say XHSPs as well as POPs), then you’ll need multiple calls to finfo_onetype to get
a Hessian from each type, which can then be added up. You can also add in Hessians stuff from
(certain types of) non-CK data, such as age-composition samples and priors on parameters/latent
variables.

Usage

finfo_onetype(dsp, ncomp)

Arguments
dsp An (off)array with indices (i, j,k, . ..) where i refers to the i-th parameter, and
j,k, ... toall the covariates. dsp[i, j,k,...JisD(sqrt(Pr_this_kintype|j,k,...))/D(params(i)
evaluated at (some guess at) the true parameter values.
ncomp An (off)array with indices (j,k, .. .), as for dsp.
Value

A square matrix with dimension (n_params,n_params), where n_params=length(dim(dsp)[11)).

6 get_Hbits

See Also

get_Hbits

Examples

See 'get_Hbits'

get_Hbits Preparation for CK design Hessian calculation

Description

get_Hbits prepares the ingredients needed to compute the expected Fisher Information ("negative
Hessian") from any kinship comparison between two samples, depending on the covariate values of
the samples and the type of kinship being considered. To calculate the overall Hessian, the results
then need to be combined with proposed sample size information and added up, which is done
(partly) by finfo_onetype (qv).

You can also use it, at the same time or later, to conveniently calculate other numerical derivatives
of your CK model, eg of a log-likelihood (if you have real or simulated data) or of "quantities of
interest" (for use in Delta-method later on). If your CK stuff is at all complicated, then it is generally
cheaper to do a bunch of numerical derivs all at once. However, that’s not compulsory. My most
general pattern is:

* 1. call get_Hbits once just to get the prob derivs;

* 2. pick a sample-size scenario, and call finfo_onetype (as many times as required, once per
different prob array) to get the overall Hessian for that scenario;

e 3. Some numderiv stuff for derivs of quantities-of-interest (for which I might again use
get_Hbits);

¢ 4. Delta-method to combine #3 with #2.

I like the flexibility of being able to deal with quantities-of-interest after-the-fact; they do not affect
the parameter Hessian. Also, they can often be calculated very quickly, without needing to compute
all CK prob arrays. However, if you are sure you know what your Qofls are, then you can merge
steps 1 & 3 into a single initial call to get_Hbits, which will save some time if your model is big
and/or has lots of parameters.

In more detail: your CK code should compute at least one probability array, more if there are two
types of kin or if some animals have qualitatively different covariates from others. get_Hbits au-
tomatically computes the derivatives of the square-roots of those probabilities. If your code also re-
turns other (must be numerical) quantities, get_Hbits calculates the derivs of those untransformed
things (i.e. no square root).

get_Hbits 7

Usage

get_Hbits(
PARS_FOR_H,
all_probs_fun, Pargs= list(),
numderiv_fun= mvbutils::numvbderiv_parallel,
Dargs= list(eps=1e-6)

Arguments

PARS_FOR_H "true" parameter values

all_probs_fun function taking parameter vector as first argument, and returning a list of all CK
prob arrays (or a list of any numeric things, actually; non-numeric elements are
ignored). Prob arrays must have names starting "Pr". If you wrote your CK stuff
in TMB(O), then all_probs_fun might just be CK_logalike_from_TMBO_obj(...)$reportees.
Can optionally have other args...

Pargs ... which you set via this argument, eg 1ist (want=TRUE) for functions obtained
from CK_logalike_from_TMB_obj.

numderiv_fun function that computes numerical derivatives of its first arg WRTO its second
arg (a vector of parameters). The parameter dimension should be the last one
in the result. Default should be OK, but don’t blame me if it isn’t; check its
helpfile. See Details.

Dargs optional list of extra args for numderiv_fun; for the default numderiv_fun, this
might be 1list(eps=1e-7) to change the step, or 1ist(PARALLEL=FALSE) if
you have not set up a parallel cluster (which you should; get_Hbits can be
slow).

Details

In this situation, where the dimension of the output (the nubmer of covariate-combinations in the
CK probabilities) is large, numerical differentiation is almost as fast as Automatic Differentiation,
and is completely general. The nice-sounding idea of using forward-mode AD apparently can’t
even be done in TMB! So, relax and just use numeric derivs.

The numerical derivatives don’t have to be particularly accurate for this application. Currently,
get_Hbits uses my numvbderiv which is very simple— and fast, if you use the parallel version,
which is the default. However, it not as accurate or robust as if you used a special-purpose R
package. Note that it will be called via numderiv_fun(fun_to_diff, param_vals, <Dargs>)
and fun_to_diff must be a function taking a parameter vector as its first argument. Thus, if you
wanted to use stats: :numericDeriv (which I do not recommend), you’d have to write a wrapper
for it, because it expects an expression argument not a function. Yawn. Boring!

Value

A list with components DSP, Dnonprob, PARS_FOR_H, and Prkin. The latter is the actual CK prob-
abilities at PARS_FOR_H; it’s a list, because there might be more than one type of CK probabil-
ity. DSP is also a list, for the same reason; it’s the derivs of the square-roots of the probabilities.
Dnonprob is also a list (possibly empty) holdings the derivs of any non-probability returnees from

8 get_Hbits

all_probs_fun, such as an actual log-likelihood or some popdyn quantities; square-roots are not
applied to such things. You can’t really use the key return value, DSP, directly; it only makes sense
in future calls to finfo_onetype

See Also

finfo_onetype, CK_logalike_from_TMB_obj

Examples

Not run:
if(require(TMBO)){ # offsets like offarray; better debugging
compile('myCKex')
dyn.load(dynlib('myCKex'))
tmbob <- with(env, # so it knows about all the variables
MakeADFun (
data= returnList(
Amat,
n_MOP_BYA= array(NA),
n_comp_MOP_BYA= array(NA)
),
parameters= list(log_Nfad_ystart= starto[1], RoI= starto[2]),
ranges= TMBO_ranges(years, Yad_range, Aad_range, Bju_range),
DLL="1glk_POP_ideal_mammal”,
silent=TRUE
))
tmbeq <- CK_logalike_funs(tmbob)
Hbits <- get_Hbits(trupars, tmbeg$reportees)
design_n_comp_MOP_BYA <- "something or other”
H_MOPonly <- finfo_onetype(
HbitsDSPDSP_MOP_BYA,
design_n_comp_MOP_BYA)
Vpar_MOPonly <- solve(H_MOPonly) # expected parameter covariances

}

End(Not run)

Index

* misc
CK_logalike_funs, 4
despack-package, 1
finfo_onetype, 5
get_Hbits, 6

CK_logalike_funs, 2, 3,4

despack (despack-package), 1
despack-package, 1

finfo_onetype, 2, 3,5,6, 8

get_Hbits, 2-6, 6

	despack-package
	CK_logalike_funs
	finfo_onetype
	get_Hbits
	Index

